DE-4000 SCRIPTING REFERENCE MANUAL

There is a delicate balance between providing a system that has capabilities that can be configured through a fixed set of options, and one that can be extended and expanded with custom programming. In designing the DE-4000 control system, the choice was made to provide a system where most applications can be met with simple configuration, but advanced functionality can be provided through custom programming using the “Lua” language.

Lua is often referred to as a scripting language. Scripting languages differ from compiled languages as they eliminate extra step of compiling the written program into machine code.

Lua comes with a background of being robust, fast, and geared towards embedded applications, with a proven track record in the gaming industry. For the DE-4000 system it is small and fits in the memory we have available, holds a lot of power, and keeps it simple for writing in the language. All information regarding the Lua scripting language is located at https://Lua.org Using the Lua engine as an embedded tool allows for taking advantage of a full architecture and standard at your fingertips. Within the language there are all of the normal attributes to programming such as functions, variables, statements, expressions etc. All of this reference material can be found at https://lua.org/ manual/5.3/ For getting started and using a guided reference, there are several editions of “Programming in Lua” available. Most recent editions are a paid for product that come in paper back or ebook form. While testing out Lua and becoming familiar, a free first edition is available and covers a lot of learning needs to get comfortable with the language. It can be located at https://www.lua.org/pil/contents.html. A major advantage to using Lua is its inherent ability to allow custom functions. While all normal functions and calls are published, there is the ability to add new functions in the DE-4000 firmware. Once new functions are defined and have calls to their internal properties, they then can be published for the user. This includes functions such as our flexible Modbus table and talking with various terminal boards linked in the system. Below is the start to the list of Altronic based functions. As functionality and features come to life through new ideas, this document will continually get updated with the latest scripts that we make available.

GETTING STARTED WITH DE-4000 SCRIPTS Basic Scripting on DE-4000

1. Begin on Dashboard on DE-4000 system environment

2. Choose “Global” from menu on left side of screen

3. In the Sub-Menu on the Left side select “Scripts”

4. Select one of the page icons under one of the 4 script options to open editor

5. Scripting can be entered into the editor

Scripting Windows and examples

Master Script The Master Script section is the Primary scripting environment. Primary scripting functions can be written in this section.

Example:

local suction = get_channel_val(1,1)
local discharge1 = get_channel_val(1,3)
diff = discharge1 - suction
set_sVirt(“Difference”, diff)

The first line gets the channel value from Terminal board 1 Input 1 and stores it in local variable named suction. The second line gets the channel value from Terminal board 1 Input 3 and stores it in local variable named discharge1. The third line takes the discharge1 pressure and subtracts the suction pressure and stores it in the global variable named diff (NOTE: Any value that you want to access from another scripting section must be stored in a global variable. This is used most in calling values into Modbus registers as explained below). The fourth line copies the value from diff and stores it into the Virtual status channel named “Difference” This channel can be displayed on the Dashboard.

Control Script The Control Script section is used to override the default control strategy found on the Global/Control page. A copy of the default control script (found in attached appendix) can be copied into this section and then modified to change the control functionality as well as add additional control loops beyond the default 2.

Modbus Script The Modbus Script section is used to move data into and out of Modbus registers

defaultModbus()
set_modbus(300,diff)

The first line pulls in the factory set Modbus mapping The second line moves the value from the global variable named diff into the 40300 Modbus Register

5.1 DE4000 Lua Script API

CUSTOM FUNCTIONS FOR SCRIPTING


create_param("index",default,"catergory","description")
  • creates a user configurable parameter
  • parameter is stored as index,
  • default value(If not changed by user) is default
  • parameters will be grouped on the Global/Params page by category
  • description is text to describe the parameter to the user

Example:

create_param("NumEngCyl",8,"Engine Params","Num. of Engine Cylinders")

get_channel_val(terminal,channel)
  • returns current value of analog input channel on terminal module terminal
  • return value type is numeric

Example:

local sp = get_channel_val(1,5)

reads value of Suction Pressure from Terminal Module #1 , Input #5


get_gbl("index",default)
  • returns global config setting stored under index or returns default if not defined

    note: get_gbl is used to retrieve global CONFIGURATION settings that are typically set when the system is configured and do not change as the system is running. If you want to set and retrieve global STATUS variables use the get_sGbl() and set_sGbl() functions >If you want to create and read virtual channels use the set_sVirt() and get_sVirt() functions.

Example:

local nt = get_gbl("NumTerm",1)

gets the number of terminal boards installed in the system


get_param("index")
  • return either the default value or the user configured value of the parameter index

Example:

get_param("NumEngCyl")

>gets the configured parameter for number of engine cylinders


get_rpm(channel)
  • reads the RPM input channel in units of revolutions per minute

note: valid channel numbers are 1 - 10(2 channels per board, up to 5 terminal boards)

Each Terminal Module has 2 RPM inputs (RPM1 and RPM2)

  • Terminal Module #1 RPM channels are 1,2
  • Terminal Module #2 RPM channels are 3,4
  • Terminal Module #3 RPM channels are 5,6
  • Terminal Module #4 RPM channels are 7,8
  • Terminal Module #5 RPM channels are 9,10

Example:

local engineRPM = get_rpm(1)
local turboRPM = get_rpm(6)

Read RPM1 channel from terminal module #1 and read RPM2 channel from Terminal module #3


get_sGbl("index", default)
  • If index is defined in the global status table then it returns the value associated with index
  • If index is not defined and optional default is provided then returns default

>note: It is recommended to always provide a default value when using this function

Example:

local cp = get_sGbl("calculatedPressure",0)

get the previously stored value "calculatedPressure", Returns 0 if not found.


get_state()
  • returns the current engine state(possible values currently 0 - 10)

Example:

local engineState = get_state()
if engineState > 7 then
    set_timer("WarmupTimer",1000)
end

get_sVirt("index")
  • returns the value of virtual channel index or returns default if the virtual channel does not exist.

Example:

local tl = get_sGbl("timeLimit")
local et = get_sVirt("ElapsedTime",0)
if et > tl then
    set_sGbl("timeExceeded",true)
else
    set_sGbl("timeExceeded",false)
end

>Gets the value of virtual channel ElapsedTime and set value of status global "timeExceeded" if ElapsedTime is greater than status global "timeLimit"


get_time()
  • returns the UNIX "epoch" time (Defined as the number of seconds elapsed since Jan 1, 1970)

Example:

local startTime = get_sGbl("startTime",0)
if startTime == 0 then
    local currentTime = get_time()
    startTime = currentTime
    set_sGbl("startTime",currentTime)
end
local et = get_time() - startTime
set_sVirt("ElapsedTime",et)

>Stores current time if first time through, otherwise calculate elapsed time


get_timer("index")
  • returns 1 or 2 values
  • First return value(Boolean) is true if timer is active(counting down) or false if timer is expired or has not been set yet
  • Second return value is the number of seconds remaining or -1 if timer is not active or has not been set yet

Example:

if not get_timer("myTimer") then
    set_sGbl("timedOut",true)
else
    set_sGbl("timedOut",false)
end

if timer is expired, then set global status "timedOut" to true

local active,remaining = get_timer("myTimer")
if not active then
    set_sVirt("timeRemaining","Expired")
else
    set_sVirt("timeRemaining",remaining)
end

getStateLabel(state)
  • return the label for the engine state corresponding to the parameter state

Example:

local stateLabel = getStateLabel(get_state())
local active, remaining = get_timer("myTimer")
if remaining > 0 then
    stateLabel == StateLabel.." "..remaining
end
set_sVirt("Countdown",stateLabel)

set_sGbl("index",value)
  • store value in the global status table under index
  • value can be a number or string but if storing a boolean use the tostring() function

Example:

local mpe = false
local sp = get_channel_val(1,5)
if sp > 15 then
    mpe = true
end
set_sGbl("minPressureExceeded",tostring(mpe))

store boolean value minPressureExceeded


set_sVirt("index",value)
  • sets a virtual status channel with channel name index

    Note: Once you create a virtual channel, you can add that channel to the dashboard using the channel name index

Example:

local sp = get_channel_val(1,5) --suction pressure
local dp = get_channel_val(1,6) --discharge pressure
local diffPress = dp - sp
set_sVirt("SuctDischDiff",diffPress)

calculate the differential between suction and discharge pressure and assign to virtual channel


set_timer("index",secs)
  • activate timer index and set countdown time to secs

Example:

set_timer("myTimer",300)

create timer myTimer and start countdown time to 300 seconds


5.2 Master Control Script

When you enter a control setup under the Global Control page the code that runs is called MasterControl.

If you wish to modify this functionality you can copy this code into the Control Script editor and make your changes to the standard configuration.

mastercontrol.lua
  1. local rampRate1 = get_gbl("rampRate1",0.8)
  2. local rampRate2 = get_gbl("rampRate2",0.8)
  3. local dischTerm = tonumber_def(get_gbl("spDischTerm",0),0)
  4. local dischChan = tonumber_def(get_gbl("spDischChan",0),0)
  5. local suctTerm = tonumber_def(get_gbl("spSuctTerm",0),0)
  6. local suctChan = tonumber_def(get_gbl("spSuctChan",0),0)
  7. local suctMin = tonumber_def(get_gbl("suctMin",0),0)
  8. local recycleMin = tonumber_def(get_gbl("recycleMin",0),0)
  9. local recycleMax = tonumber_def(get_gbl("recycleMax",0),0)
  10. local suctSp = tonumber_def(get_gbl("suctSp",0),0)
  11. local dischMax = tonumber_def(get_gbl("dischMax",0),0)
  12. local dischSp = tonumber_def(get_gbl("dischSp",0),0)
  13. local outputTerm = tonumber_def(get_gbl("outputTerm",0),0)
  14. local outputChan = tonumber_def(get_gbl("outputChan",0),0)
  15. local recycleTerm = tonumber_def(get_gbl("outputTerm2",0),0)
  16. local recycleChan = tonumber_def(get_gbl("outputChan2",0),0)
  17. local speedRevAct = tonumber_def(get_gbl("speedRevAct",0),0)
  18. local recycleRevAct = tonumber_def(get_gbl("recycleRevAct",0),0)
  19. local outputLow = tonumber_def(get_gbl("outputLow",0),0)
  20. local outputLow2 = tonumber_def(get_gbl("outputLow2",0),0)
  21. local outputHigh = tonumber_def(get_gbl("outputHigh",0),0)
  22. local outputHigh2 = tonumber_def(get_gbl("outputHigh2",0),0)
  23. local spSuctType = get_gbl("spSuctType","linear")
  24. local spDischType = get_gbl("spDischType","linear")
  25. local suctPIDPFactor = tonumber_def(get_gbl("suctPIDPFactor",0),0)
  26. local suctPIDIFactor = tonumber_def(get_gbl("suctPIDIFactor",0),0)
  27. local suctPIDDFactor = tonumber_def(get_gbl("suctPIDDFactor",0),0)
  28. local dischPIDPFactor = tonumber_def(get_gbl("dischPIDPFactor",0),0)
  29. local dischPIDIFactor = tonumber_def(get_gbl("dischPIDIFactor",0),0)
  30. local dischPIDDFactor = tonumber_def(get_gbl("dischPIDDFactor",0),0)
  31. local recycleCtrl = false
  32. local recycleSuctionRev = false
  33. local recycleDischargeRev = false
  34. if recycleChan > 0 and recycleTerm > 0 then
  35. recycleCtrl = true
  36. end
  37.  
  38. local dischPct = 100
  39. local suctPct = 100
  40.  
  41.  
  42. local dischOutput = 0
  43. local suctOutput = 0
  44. local rSuctOutput = 0
  45. local rDischOutput = 0
  46. local minLoad = 0
  47. local maxLoad = 100
  48. local minRecycle = 0
  49. local maxRecycle = 100
  50. local speedTarget = get_sGbl("speedTarget",0)
  51. local recycleTarget = get_sGbl("recycleTarget",0)
  52.  
  53. function map_range(rangeLow,rangeHigh,input)
  54. if input <= rangeLow and input <= rangeHigh then
  55. return 0
  56. end
  57. if input >= rangeLow and input >= rangeHigh then
  58. return 100
  59. end
  60. local rangeDiff = math.abs(rangeLow - rangeHigh)
  61. local min = math.min(rangeLow,rangeHigh)
  62. local retval = math.abs(input - min) / rangeDiff * 100
  63. if retval > 100 then retval = 100 end
  64. if retval < 0 then retval = 0 end
  65. return retval
  66. end
  67.  
  68. local suct = false
  69. local suctVal = 0
  70. if tonumber_def(get_gbl("spSuctEn",0),0) == 1 then
  71. if suctTerm > 0 and suctChan > 0 then
  72. suctVal = get_channel_val(suctTerm,suctChan)
  73. suct = true
  74. end
  75. end
  76.  
  77.  
  78. if suct then
  79. if spSuctType == "linear" then
  80. local suctDiff = suctSp - suctMin
  81. if suctDiff == 0 then suctDiff = 1 end
  82. if suctVal < suctSp then
  83. local suctErr = suctSp - suctVal
  84. suctPct = suctErr / suctDiff
  85. if suctPct > 1 then suctPct = 1 end
  86. if suctPct < 0 then suctPct = 0 end
  87. suctOutput = (1 - suctPct) * 100
  88. else
  89. suctOutput = 100
  90. end
  91. else
  92. set_gbl("PIDsuctEnable",1)
  93. set_gbl("PIDsuctPFactor",suctPIDPFactor)
  94. set_gbl("PIDsuctIFactor",suctPIDIFactor)
  95. set_gbl("PIDsuctDFactor",suctPIDDFactor)
  96. set_gbl("PIDsuctSp",suctSp)
  97. set_gbl("PIDsuctDeadband",0.2)
  98. local suctPidOutput = doPid("suct",suctVal)
  99. suctOutput = suctPidOutput
  100. end
  101. else
  102. suctOutput = 100
  103. end
  104.  
  105.  
  106. local disch = false
  107. local dischVal = 0
  108. if tonumber_def(get_gbl("spDischEn",0),0) == 1 then
  109. if dischTerm > 0 and dischChan > 0 then
  110. dischVal = get_channel_val(dischTerm,dischChan)
  111. disch = true
  112. end
  113. end
  114. if disch then
  115. if spDischType == "linear" then
  116. local dischDiff = dischMax - dischSp
  117. if dischDiff == 0 then dischDiff = 1 end
  118. if dischVal > dischSp then
  119. local dischErr = dischVal - dischSp
  120. dischPct = dischErr / dischDiff
  121. if dischPct > 1 then dischPct = 1 end
  122. if dischPct < 0 then dischPct = 0 end
  123. dischOutput = (1 - dischPct) * 100
  124. else
  125. dischOutput = 100
  126. end
  127. else
  128. set_gbl("PIDdischEnable",1)
  129. set_gbl("PIDdischPFactor",dischPIDPFactor)
  130. set_gbl("PIDdischIFactor",dischPIDIFactor)
  131. set_gbl("PIDdischDFactor",dischPIDDFactor)
  132. set_gbl("PIDdischSp",dischSp)
  133. set_gbl("PIDdischRevAct",1)
  134. set_gbl("PIDdischDeadband",0.2)
  135. local dischPidOutput = doPid("disch",dischVal)
  136. dischOutput = dischPidOutput
  137. end
  138. else
  139. dischOutput = 100
  140. end
  141.  
  142.  
  143. local minOutput = 100
  144. local winning = 0
  145. if suctOutput < minOutput then
  146. minOutput = suctOutput
  147. winning = 1
  148. end
  149. if dischOutput < minOutput then
  150. minOutput = dischOutput
  151. winning = 2
  152. end
  153.  
  154. if suctOutput == dischOutput then
  155. winning = 0
  156. end
  157.  
  158. if winning == 0 then
  159. set_gbl("PIDsuctMax",100)
  160. set_gbl("PIDdischMax",100)
  161. end
  162.  
  163. if winning == 1 then
  164. set_gbl("PIDdischMax",math.min(suctOutput + 2,100))
  165. set_gbl("integraldisch",0)
  166. set_gbl("lastErrdisch",0)
  167. set_gbl("outputSumdisch",0)
  168. set_gbl("PIDsuctMax",100)
  169. end
  170. if winning == 2 then
  171. set_gbl("PIDsuctMax",math.min(dischOutput + 2,100))
  172. set_gbl("integralsuct",0)
  173. set_gbl("lastErrsuct",0)
  174. set_gbl("outputSumsuct",0)
  175. set_gbl("PIDdischMax",100)
  176. end
  177.  
  178. local recycleMinOutput = minOutput
  179.  
  180. local manOutput = 0
  181. --********************************************************************
  182. local manMode = 0
  183. local manTerm = tonumber_def(get_gbl("manTerm",0),0)
  184. local manChan = tonumber_def(get_gbl("manChan",0),0)
  185. if manTerm > 0 and manChan > 0 then
  186. local manInput = get_channel_val(manTerm,manChan)
  187. if manInput > 0.5 then
  188. manMode = 0
  189. set_sVirt("SpeedControl","Auto")
  190. else
  191. manMode = 1
  192. set_sVirt("SpeedControl","Manual")
  193. end
  194. else
  195. if get_sVirt("SpeedControl","Auto") == "Auto" then
  196. manMode = 0
  197. else
  198. manMode = 1
  199. end
  200. end
  201.  
  202. --if manMode == 1 and get_state() == 8 then
  203. local manSpeed = get_sVirt("ManualSpeed",0)
  204. local idleSpeed = get_gbl("idleSpeed",0)
  205. local lowSpeed = get_gbl("lowSpeed",0)
  206. local highSpeed = get_gbl("highSpeed",0)
  207. local maxSpeed = get_gbl("maxSpeed",0)
  208. local diff = highSpeed - lowSpeed
  209. if diff < 0 then diff = 0 end
  210. local maxDiff = maxSpeed - idleSpeed
  211. if maxDiff < 0 then maxDiff = 0 end
  212.  
  213. if get_sVirt("speedBump",0) ~= 0 then
  214. local si = get_gbl("SpeedIncrement",0)
  215. local sip = get_param("SpeedIncrement",0)
  216. if sip ~= 0 then si = sip end
  217. manSpeed = manSpeed + (si * get_sVirt("speedBump",0))
  218. set_sVirt("speedBump",0)
  219. end
  220.  
  221. if get_sVirt("AutoManBump",0) > 0 then
  222. set_sVirt("SpeedControl","Auto")
  223. set_sVirt("AutoManBump",0)
  224. end
  225.  
  226. if get_sVirt("AutoManBump",0) < 0 then
  227. set_sVirt("SpeedControl","Manual")
  228. set_sVirt("AutoManBump",0)
  229. end
  230.  
  231. if manMode == 1 then
  232. local manSpeedTerm = tonumber_def(get_gbl("manSpeedTerm",0),0)
  233. local manSpeedChan = tonumber_def(get_gbl("manSpeedChan",0),0)
  234. if manSpeedTerm > 0 and manSpeedChan > 0 then --*** USE SPEED POT TO SET SPEED
  235. local speedInput = tonumber(get_channel_val(manSpeedTerm,manSpeedChan))
  236. local speedPct = (speedInput / 5) * 100
  237. if speedPct > 100 then speedPct = 100 end
  238. if speedPct < 0 then speedPct = 0 end
  239. manOutput = speedPct
  240. manSpeed = math.floor((speedPct / 100) * diff + lowSpeed + 0.5)
  241. else -- Use ManualSpeed to set speed
  242. manOutput = ((manSpeed - lowSpeed) / diff) * 100.0
  243. if manOutput < 0 then manOutput = 0 end
  244. if manOutput > 100 then manOutput = 100 end
  245. end
  246. minOutput = manOutput
  247. else
  248. --speedTarget =
  249. local stRpm = (speedTarget/100) * maxDiff + idleSpeed
  250. if stRpm < lowSpeed then stRpm = lowSpeed end
  251. if stRpm > highSpeed then stRpm = highSpeed end
  252. manSpeed = math.floor(stRpm)
  253. end
  254.  
  255. if manSpeed < lowSpeed then
  256. manSpeed = lowSpeed
  257. end
  258. if manSpeed > highSpeed then
  259. manSpeed = highSpeed
  260. end
  261.  
  262. set_sVirt("ManualSpeed",manSpeed)
  263.  
  264.  
  265.  
  266. --********************************************************************
  267.  
  268.  
  269. local output1 = 0
  270. local output2 = 0
  271. if spSuctType == "pid" or spDischType == "pid" then
  272. output1 = map_range(outputLow,outputHigh,minOutput)
  273. set_sVirt("out1",output1)
  274. output2 = map_range(outputLow2,outputHigh2,recycleMinOutput)
  275. set_sVirt("out2",output2)
  276. local hasRPM = idleSpeed > 0 and lowSpeed > 0 and highSpeed > 0 and maxSpeed > 0
  277. if outputTerm and outputChan then
  278. if hasRPM then
  279. local speedRpm = output1 / 100 * (highSpeed - lowSpeed) + lowSpeed
  280. speedTarget = (speedRpm - idleSpeed) / (maxSpeed - idleSpeed) * 100
  281. else
  282. speedTarget = output1
  283. end
  284. end
  285. if recycleTerm and recycleChan then
  286. set_ao_val(recycleTerm,recycleChan,output2)
  287. end
  288.  
  289. if get_state() == 9 then
  290. speedTarget = get_sGbl("speedTarget",0)
  291. if speedTarget > 0 then speedTarget = speedTarget - rampRate1 end
  292. if speedTarget < 0 then speedTarget = 0 end
  293. end
  294. if get_state() < 8 then speedTarget = 0 end
  295. set_sGbl("speedTarget",speedTarget)
  296. set_ao_val(outputTerm,outputChan,speedTarget)
  297. set_sVirt("spTarget",speedTarget)
  298.  
  299. if hasRPM then
  300. local sRpm = (speedTarget/100) * maxDiff + idleSpeed
  301. set_sVirt("Speed Target",math.floor(sRpm + 0.5))
  302. end
  303.  
  304.  
  305.  
  306. else
  307.  
  308. -- Remember that minOutput is 0 - 100 pct of lowSpeed <-> highSpeed
  309. -- We need to convert this to 0 - 100 pct of idleSpeed <-> maxSpeed
  310. local suctPct = map_range(outputLow,outputHigh,minOutput)
  311. local speedRpm = suctPct / 100 * (highSpeed - lowSpeed) + lowSpeed
  312. minOutput = (speedRpm - idleSpeed) / (maxSpeed - idleSpeed) * 100
  313.  
  314.  
  315.  
  316. if minOutput <= speedTarget then
  317. speedTarget = speedTarget - rampRate1
  318. if speedTarget < minOutput then speedTarget = minOutput end
  319. else
  320. speedTarget = speedTarget + rampRate1
  321. if speedTarget > minOutput then speedTarget = minOutput end
  322. if speedTarget > maxLoad then speedTarget = maxLoad end
  323. end
  324. if speedTarget > maxLoad then speedTarget = maxLoad end
  325. if speedTarget < minLoad then speedTarget = minLoad end
  326.  
  327. if recycleCtrl then
  328. local recyclePct = map_range(outputLow2,outputHigh2,recycleMinOutput)
  329. if recyclePct <= recycleTarget then
  330. recycleTarget = recycleTarget - rampRate2
  331. if recycleTarget < recyclePct then recycleTarget = recyclePct end
  332. else
  333. recycleTarget = recycleTarget + rampRate2
  334. if recycleTarget > recyclePct then recycleTarget = recyclePct end
  335. end
  336. if recycleTarget > maxRecycle then recycleTarget = maxRecycle end
  337. if recycleTarget < minRecycle then recycleTarget = minRecycle end
  338. local recycleOutput = recycleTarget
  339. if get_state() < 8 then
  340. recycleTarget = 0
  341. end
  342. if recycleRevAct == 1 then
  343. recycleOutput = 100 - recycleOutput
  344. end
  345. set_ao_val(recycleTerm,recycleChan,recycleOutput)
  346. set_sGbl("recycleTarget",recycleTarget)
  347. set_sVirt("recycleTarget",recycleTarget)
  348. end
  349.  
  350. if get_state() == 9 then
  351. speedTarget = get_sGbl("speedTarget",0)
  352. if speedTarget > 0 then speedTarget = speedTarget - rampRate1 end
  353. if speedTarget < 0 then speedTarget = 0 end
  354. end
  355. if get_state() < 8 then speedTarget = 0 end
  356. set_sGbl("speedTarget",speedTarget)
  357. set_ao_val(outputTerm,outputChan,speedTarget)
  358. set_sVirt("spTarget",speedTarget)
  359. local sRpm = (speedTarget/100) * maxDiff + idleSpeed
  360. set_sVirt("Speed Target",math.floor(sRpm + 0.5))
  361.  
  362.  
  363. end